839

840 C++: The Complete Reference

e algorithms defined by the standard template library are described here. These
algorithms operate on containers through iterators. All of the algorithms are template
functions. Here are descriptions of the generic type names used by the algorithms.

Generic Name Represents

Bilter Bidirectional iterator
Forlter Forwaid iterator

Inlter Input iterator

Outlter Output iterator
Randlter Random access iterator
T Some type of data

Size Some type of integer
Func Some type of function
Generator A function that generates objects
BinPred Binary predicate
UnPred Unary predicate

Comp Comparison function

adjacent_find

s template <class
i

ForIter adiacen crIter end);
template <clLass
Forliter adjacen i oriter end, BinPred pfn);

The adjacent_find() algorithm searches for adjacent matching elements within
a sequence specified by start and end and returns an iterator to the first element. If no
adjacent pair is found, end is returned. The first version looks for equivalent elements.
The second version lets you specify your own method for determining matching
elements.

binary_search

template <class ForIter, class T>
bool binary_search(ForIter start, ForIter end, const 7 &val);

Chapter 34: The STL Algorithms

template <class ForlIter, class T, class Comp>
bool binary_search(Forlter start, ForIter end, const T &val,
Comp cmpfn);

The binary_search() algorithm performs a binary search on an ordered sequence
beginning at start and ending with end for the value specified by val. It returns true if
oal is found and false otherwise. The first version compares the elements in the specified
sequence for equality. The second version allows you to specify your own comparison
function.

copy

template <class Inlter, class Outlter>
OutIter copyl{Inlter start, InlIter end, Outlter result);

The copy() algorithm copies a sequence beginning at start and ending with end,
putting the result into the sequence pointed to by result. It returns an iterator to the
end of the resulting sequence. The range to be copied must not overlap with result.

copy_backward

template <class Bilterl, class Bilter2>
BiIter2 copy_backward(Bilterl start, Bilterl end, BiIter2 result);

The copy_backward() algorithm is the same as copy() except that it moves the
elements from the end of the sequence first.

count

template <class InIter, class T>
ptrdiff_t count(Inlcer start, Inlter end, const T &val);

The count() algorithm returns the number of elements in the sequence beginning at
start and ending at cnd that match val.

841

842 C++: The Complete Reference

count _if

template <class InIter, class UnPred>
%% ptrdiff_t count(Inlter start, InIter end, UnPred pfn);

The count_if() algorithm returns the number of elements in the sequence beginning at
start and ending at end for which the unary predicate pfn returns true. The type ptrdiff_t is
defined as some form of integer.

equal

template <class Inlterl, class Inlter2>
bool eqgual (InIterl startl, InTIterl endl, Inlter2 startZ2);
template <class InIterl, class InIter2, class BinPred>
bool equal (InIterl startl, InIterl endl, Inlter2 startZ,
BinPred pfn);

The equal() algorithm determines if two ranges are the same. The range determined
by start] and end1 is tested against the sequence pointed to by start2. If the ranges are the
same, true is returned. Otherwise, false is returned.

The second form allows you to specify a binary predicate that determines when
two elements are equal.

equal_range

template <class ForIter, class T>
pair<ForIter, ForIter> equal_range(ForIter start, ForlIter end,
const T &val);
template <class ForIter, class T, class Comp>
pair<ForIter, Forlter> equal_range (ForIter start, ForIter end,
const T &val, Comp cmpfn);

The equal_range() algorithm returns a range in which an element can be inserted
into a sequence without disrupting the ordering of the sequence. The region in which
to search for such a range is specified by start and end. The value is passed in val. To
specify your own search criteria, specify the comparison function cmpfn.

The template class pair is a utility class that can hold a pair of objects in its first and
second members.

Chapter 34: The STL Algorithms

fill and fill_n

ss Forlter, class T>

Forlter start, ForlIter end, const T &val);
template <class OutITter, class Size, class T>
n

y(Cutlter start, Size num, const T &val);

o

void fil

The fill() and fill_n() algorithms fill a range with the value specified by val. For
fill() the range is specified by start and end. For fill_n(), the range begins at starf and
runs for num elements.

find

template <class InlIter, class T>
InTter find{Initer start, Inlter end, const T &val);

The find() algorithm searches the range start to end for the value specified by val.
It returns an iterator to the first occurrence of the element or to end if the value is not
in the sequence.

find _end

template <class ForIterl, class ForlIter2>
Forlterl find end(ForIterl startl, ForIterl endl,
ForIter2 start2, Forlter2 end2);
template <class ForIterl, class ForlIter2, class BinPred>
ForIterl find_end(Forlteri startl, ForIterl endl,

ForIter2 start2, Foriter2 end2, BinPred pfn);

The find_end() algorithm finds the last subsequence defined by start2 and end2
within the range start1 and end1. If the sequence is found, an iterator to the first element
in the sequence is returned. Otherwise, the iterator end1 is returned.

The second form allows you to specify a binary predicate that determines when
elements match.

find first_of

remplate <class Forlterl, class ForIter2>
ForTterl find first of (ForIterl startl, ForIterl endl,

844 C++: The Complete Reference

Forlter2 start2, Forlter2 end2};
template <class ForIterl, class ForIter2, class BinPred>
ForIterl find first of (ForIterl startl, ForlIterl endl,
ForIter2 start2, ForlIter2 endZz,
BinPred pfn);

The find_first_of() algorithm finds the first element within the sequence defined
by start] and end1 that matches an element within the range start1 and end1. If no
matching element is found, the iterator end1 is returned.

The second form allows you to specify a binary predicate that determines when
elements match.

find_if

template <class InlIter, class UnPred>
InIter find_ if(InIter start, Inlter end, UnPred pfn);

The find_if() algorithm searches the range start to end for an element for which the
unary predicate pfir returns true. It returns an iterator to the first occurrence of the element
or to end if the value is not in the sequence.

for_each

template<class InlIter, class Func>
Func for_each(Inlter start, Inlter end, Func fn);

The for_each() algorithm applies the function fi to the range of elements specified
by start and end. It returns fi.

generate and generate_n

! template <class ForIter, class Generator>

void generate(Forlter start, ForIter end, Generator fngen);
template <class Forlter, class Size, class Generator>

void generate_n(Qutlter start, Size num, Generator fngen);

The algorithms generate() and generate_n() assign to elements in a range the
values returned by a generator function. For generate(), the range being assigned is

Chapter 34: The STL Algorithms

specified by start and end. For generate_n(), the range begins at start and runs for num
elements. The generator function is passed in frgen. It has no parameters.

includes

template <class InlIterl, class InlIter2>
bool includes(InIterl startl, InIterl endl,
InIter2 start2, InlIter2 end2);
template <class Initerl, class InlIter2, class Comp>
bool includes (InIterl startl, InIterl endl,
InIter2 start2, Inlter2 end?, Comp cmpfn};

The includes() algorithm determines if the sequence defined by start1 and end1
includes all of the elements in the sequence defined by start2 and end2. It returns true
if the elements are all found and false otherwise.

The second form allows you to specify a comparison function that determines when
one element is less than another.

inplace_merge

template <class BiIter>

void inplace_merge (Bilter start, Bilter mid, Bilter end);
template <class BiIter, class Comp>

void inplace_merge (Bilter start, BiIlter mid, BiIter end, Comp cmpfn) ;

Within a single sequence, the inplace_merge() algorithm merges the range defined
by start and mid with the range defined by mid and end. Both ranges must be sorted in
increasing order. After executing, the resulting sequence is sorted in increasing order.

The second form allows you to specify a comparison function that determines when
one element is less than another.

iter_swap

template <class ForIterl, class ForIter2>
void iter_swap(ForIterl i, ForIter2 j)

The iter_swap() algorithm exchanges the values pointed to by its two iterator
arguments.

845

846 C++: The Complete Reference

lexicographical_compare

template <class InlIterl, class InIterZ>
bool lexicographical compare(Inlterl startl, Initerl endl.
IrnIter2 startZ, Inlter2 endZl);
template <class Inlterl, class InIter2, class Comp>

bool lexicographical_compare (Inlterl startl, InTteri

Inlter?2 start2, Inlterl:

Comp cmpfnj:

The lexicographical_compare() algorithm alphabetically compares the sequence
defined by start] and endl with the sequence defined by start2 and end2. It returns true
if the first sequence is lexicographically less than the second (that is, if the first sequence
would come before the second using dictionary order).

The second form allows you to specify a comparison function that determines when
one element is less than another.

lower_bound

template <class ForIter, class T>
ForIter lower_kound(ForIter start, Forlter end, const T &val);
template <class ForIter, class T, class Comp>
ForIter lower_bound(ForIter start, Forlter end, const T &val,
Comp cmpfn) ;

The lower_bound() algorithm finds the first point in the sequence defined by start
and end that is not less than val. It returns an iterator to this point.

The second form allows you to specify a comparison function that determines when
one element is less than another.

make_heap

template <class Randlter>
void make_heap (RandIter start, RandIter end);
template <class RandIter, class Comp>
void make_heap(RandIter start, RandIter end, Comp cmpfr);

The make_heap() algorithm constructs a heap from the sequence defined by start
and end.

Chapter 34: The STL Algorithms 847

The second form allows you to specify a comparison function that determines when
one element is less than another.

max

template <class T>
const T &mex(const T &1, const T &J);
template <class T, class Comp>

const T &max{const T &i, const T &7, Comp cmpfn);

The max() algorithm returns the maximum of two values.
The second form allows you to specify a comparison function that determines when
one element is less than another.

max_element

template <class Forlter>
ForIter max_element (Foriter start, Foriter last);
template <class ForIter, class Comp>
ForIter max_element (ForIter start, Forlter last, Comp cmpfn);

The max_element() algorithm returns an iterator to the maximum element within
the range start and last.

The second form allows you to specify a comparison function that determines when
one element is less than another.

merge

yar

template <class InIterl, class InIter2, class OutlIter>
OutIter merge(Inlterl startl, InIterl endil,
InIter?2 start2, Inlter2 endz,
OutlIter result);
template <class InIterl, class InIiter2, class OutlIter, class Comp>
outIter merge(Initerl startl, InIterl endl,
InIter2 start2, Inlter2 endZ,
OutTter result, Comp cmpfn);

The merge() algorithm merges two ordered sequences, placing the resuit into a
third sequence. The sequences to be merged are defined by start1, end1 and start2, end2.

848 C++: The Complete Reference

The result is put into the sequence pointed to by result. An iterator to the end of the

resulting sequence is returned.
The second form allows you to specify a comparison function that determines when

one element is less than another.

min

template <class T»>
const T &min(const T &i, const T &7);
template <class T, class Comp>
const T &min(const T &I, const T &7, Comp cmpfn);

The min() algorithm returns the minimum of two values.
The second form allows you to specify a comparison function that determines when
one element is less than another.

min_element

template <class ForIter>
ForIter min_element (ForIter start, ForIlter last);

template <class ForlIter, class Comp>
ForIter min_element (ForIter start, ForIter last, Comp cmpfn);

The min_element() algorithm returns an iterator to the minimum element within

the range start and last.
The second form allows you to specify a comparison function that determines when

one element is less than another.

mismatch

template <class Inlterl, class Inlter2>
pair<Inlterl, TInlter2> mismatch(InIterl startl, Inliterl endl,
Inlter2 start2);
template <class Inlterl, class InIter2, class BinPred>
pair<InIterl, InlIter2> mismatch(InTterl startl, InlIterl endl,
InIter2 start2, BinPred pfn);

The mismatch() algorithm finds the first mismatch between the elements in two
sequences. Iterators to the two elements are returned. If no mismatch is found, iterators
to the end of the sequence are returned.

Chapter 34: The STL Algorithms

The second form allows you to specify a binary predicate that determines when one
element is equal to another.

The pair template class contains two data members called first and second that hold
the pair of values.

next_permutation

template <class Bilter>
bool next_permutation(Bilter start, Bilter end);
template <class Bilter, class Comp>

bool next_permutation(Bilter start, Bilter end, Comp cmfn);

The next_permutation() algorithm constructs the next permutation of a sequence. The
permutations are generated assuming a sorted sequence: from low to high represents
the first permutation. If the next permutation does not exist, next_permutation() sorts the
sequence as its first permutation and returns false. Otherwise, it returns true.

The second form allows you to specify a comparison function that determines when
one element is less than another.

nth_element

template <class RandIter>
void nth_element (RandIter startv, RandIter element, RandIter end);
template <class RandIter, class Comp>
void nth_element (RandIter start, Randliter element,
RandIter end, Comp cmpfn);

The nth_element() algorithm arranges the sequence specified by start and end such
that all elements less than element come before that element and all elements greater than
clenient come after it.

The second form allows you to specify a comparison function that determines when
one element is greater than another.

partial_sort

template <class RandIter>
void partial_sort(RandIlter start, RandIter mid, RandIter end):
template <class RandIter, class Comp>
void partial_sort (RandIter start, RandIter mid,
RandIter end, Comp cmpfn);

849

850

C++: The Complete Reference

The partial_sort() algorithm sorts the range start to end. However, after execution,
only elements in the range strt to mid will be in sorted order.

The second form aliows you to specify a comparison function that determines when
one element is less than another.

partial_sort_copy

=

ter, class RandIter>
RandIter partial_scrt_copy(Inlter start, InIter end,
RandIter res_start, Randlter res_end):;
template <class Inlter, class Randlter,

class Comp>
stare,

RandIter

RandIter partial_scru_copy(Inlter InTter end,
res_start,

re RandIter res_end,
Comp cmpfn)

i

The partial_sort_copy() algorithm sorts the range start to end and then copies as many

elements as will fit into the resulting sequence defined by res_start and res_end. It returns an
iterator to one past the last element copied into the resuiting sequence.

The second form allows you to specify a comparison function that determines when
one element is less than another.

partition

iy

g% Iter, class UnPred>
g Bilter partition(Bi

B

template <class Bi

Iter start, Bilter end, UnPred pfn);

The partition() algorithm arranges the sequence defined by starf and end such that
all elements for which the predicate specified by pfin returns true come before those for

which the predicate returns false. It returns an iterator to the beginning of the elements
for which the predicate is false.

pop_heap

template <class RandTter>

void pop_heap(RandIlter srart, Randlter end);
template <class RandIter, cl

ass Comp>
void pop_heap(Randlter start, Randlter end

Comp cmpfn) ;

The pop_heap() algorithm exchanges the first and last—1 elements and then
rebuilds the heap.

Chapter 34: The STL Algorithms

The second form allows you to specify a comparison function that determines when
one element is less than another.

prev_permutation

template <class Bilter>
bool prev_permutation(Bilter start, Bilter end);
template <class Bilter, class

S
bool prev_permutation{Bilter start, Bilter end, Cocmp cmpfnj;

The prev_permutation() algorithm constructs the previous permutation of a sequence.
The permutations are generated assuming a sorted sequence: from low to high represents
the first permutation. If the next permutation does not exist, prev_permutation() sorts the
sequence as its final permutation and returns false. Otherwise, it returns true.

The second form allows you to specify a comparison function that determines when
one element is less than another.

push_heap

template <class RandIter>
t. RandIter enrd);

void push_heap (RandIter star
class Comp>
r

template <class RandIter,

a
void push_heap{RandIter start, RandIter end, Comp cmpfnj:

The push_heap() algorithm pushes an element onto the end of a heap. The range
specified by start and end is assumed to represent a valid heap.

The second form allows you to specify a comparison function that determines when
one element is less than another.

random_shuffle

-

cemplate <class Randiter>

tart, RandIter end);

[eh

void rarcdom_shuffle(Ran

L
05
0

&
template <class RandIter, class Generator>

void ranclom_shuffle(Randiter start, RandIlter end, Generator rand_gen);

1)

The random_shuffle() algorithm randomizes the sequence defined by start and end.

851

852 C++: The Complete Reference

The second form specifies a custom random number generator. This function must
have the following general form:

rand_gen(nuim);

[t must return a random number between Zero and M.
remove, remove_if, remove_copy, and remove_copy_if

template <class ForlIter, class T>

ForIter remove(Forlter start, ForlIter end, const T &vai);
template <class ForlIter, class UnPred>

ForIter remove_if (ForlIter start, ForIter end, UnPred pfn);
template <class Inlter, class Outlter, class T>

OutIter remove_copy (InIter start, Inlter end,

Cutlter result, const T &val);

template <class InIter, class Outlter, class UnPred>

OutIter remove_copy_if{Inlter start, InlIter end,

OutIter result, UnPred pfn);

The remove() algorithm removes elements from the specified range that are equal
to val. It returns an iterator to the end of the remaining elements.

The remove_if() algorithm removes elements from the specified range for which
the predicate pfi is true. It returns an iterator to the end of the remaining elements.

The remove_copy() algorithm copies elements from the specified range that are
equal to val and puts the result into the sequence pointed to by result. It returns an iterator
to the end of the result.

The remove_copy_if() algorithm copies elements from the specified range for which
the predicate pfn is true and puts the result into the sequence pointed to by result. It
returns an iterator to the end of the result.

replace, replace_copy, replace_if, and replace_copy_if

template <class ForIter, class T>
void replace(ForIter start, Forlter end.
const T &old, const T &new);
template <class ForIter, class UnPred, class T>
void replace_if(ForIter start, Foriter end,
UnFred pfn, const T &new);

template <class Inlter, class OutlIter, class T>

Chapter 34: The STL Algorithms

Qutlter replace_copy{InTter start, InIter end, Outlter result,
const T &old, const T &new);
template <class Inlter, class Cutlter, class UnPred, class T>
OutIter replace_copy_if{(Initer start, Initer end, Outlter result
UnPred pfn, const T &new);

Within the specified range, the replace() algorithm replaces elements with the value
old with elements that have the value rew.

Within the specified range, the replace_if() algorithm replaces those elements for
which the predicate pfi is true with elements that have the value new.

Within the specified range, the replace_copy() algorithm copies elements to result.
In the process it replaces elements that have the value ol¢ with elements that have the
value new. The original range is unchanged. An iterator to the end of result is returned.

Within the specified range, the replace_copy_if() algorithm copies elements to
result. In the process it replaces elements for which the predicate pfn returns true with
clements that have the value new. The original range is unchanged. An iterator to the
end of result is returned.

reverse and reverse_copy

template <class Bilter>
void reverse(Bilter start, Bilter end);
template <class Bilter, class Outlter>
outlIter reverse_copy(Bilter start, Bilter end, Outlter result);

The reverse() algorithm reverses the order of the range specified by start and end.
The reverse_copy() algorithm copies in reverse order the range specified by start
and end and stores the result in result. It returns an iterator to the end of result.

rotate and rotate_copy

template <class ForIter>
void rotate(ForlIter start, Forlter mid, Forlter end);
template <class ForIter, class Outlter>
CutIter rotate_copy(ForIter start, ForIter mid, ForlIter end,
Outlter result);

The rotate() algorithm left-rotates the elements in the range specified by start and
end so that the element specified by mid becomes the new first element.

853

854 C++:The Complete Reference

The rotate_copy() algorithm copies the range specified by start and vid, storing the
result in result. In the process it left-rotates the elements so that the element specified by
mid becomes the new first element. It returns an iterator to the end of result.

search

template <class rForIterl, class ForIter2>
ForIterl search(ForIterl startl, ForIterl endl,
Forlter2 start2, Forlter2 end?2);
template <class ForIterl, class ForIter2, class BinPreds
ForIterl search(ForIterl startl, ForIterl endl,
ForIter2 start2, ForIter2 end2, BinPred pfn);

The search() algorithm searches for a subsequence within a sequence. The sequence
being searched is defined by starti and end1. The subsequence being searched is specified
by start? and end2. If the subsequence is found, an iterator to its beginning is returned.
Otherwise, end1 is returned.

The second form allows vou to specify a binary predicate that determines when one
element is equal to another.

search _n

template <class ForIter, class Size, class T>
ForIter search_n(ForIter start, Forlter end,
Size num, const T &val):
template <class ForIter, class Size, class T, class BinPred>
ForIter search n(ForlIter start, Forlter end,
Stze num, const T &val, BinPred pfn);

The search_n() algorithm searches for a sequence of num elements equal to val within
a sequence. The sequence being searched is defined by start] and end1. If the subsequence is
found, an iterator to its beginning is returned. Otherwise, end is returned.

The second form allows you to specify a binary predicate that determines when one
element is equal to another.

set_difference

template <class InIterl, class InlIter2, class OutIters
nlterl

CutIter set_difference(InIt startl, InIterl endil,

Chapter 34: The STL Algorithms 855

Inlter?2 start2, InizerZ end2, Dutlter result);

template <class InIterl, class InIter2, class Outiter, class Comp>
OutIter set_difference{Initerl startil, terl endl,
Inlter2 start?, IniIzerZ endZ,

OutlIter result, Comp cmpfn);

The set_difference() algorithm produces a sequence that contains the difference
between the two ordered sets defined by start], endl and start2, end2. That is, the set
defined by start2, end2 is subtracted from the set defined by start], end1. The result is
ordered and put into result. It returns an iterator to the end of the result.

The second form allows you to specify a comparison function that determines when
one element is less than another.

set_intersection

template <class InIterl, class IniterZ, class Outlter>
OutIter set_intersection{Inlteri startl, Initerl endl,
InTter2 start2, Inlter2 endZ, Outlter result);
template <class InTterl, class InlIter2, class Outlter, class Comp>
OutIter set_intersecticn(InItarl startl, Inlterl endi,
Inlter?2 start2z, Initer?2 end2,
Outlter result, Comd cmpfn);

The set_intersection() algorithm produces a sequence that contains the intersection
of the two ordered sets defined by startl, end1 and start2, end2. These are the elements
common to both sets. The result is ordered and put into resuft. It returns an iterator to
the end of the result.

The second form allows you to specify a comparison function that determines when
one element is less than another.

set_symmetric_difference

template <class Inlterl, c.la: 2, class Outlter

.as >
OutIter set_symmetric_difference(initerl start!, Inlterl endl,

i
Inliter2 start2, Inlter2 end’, Outlter result);

template <class Inlterl, clz InIter?, class Outliter, class Comp>
Outlter set_symmetric_difference(Initerl startl, Inlterl endl,
Initer2 start?, Initer2 end?, Outiter result,

Comp cmpfn);

856 C++:The Complete Reference

The set_symmetric_difference() algorithm produces a sequence that contains the
symmetric difference between the two ordered sets defined by start1, end1 and start2,
end2. That is, the resultant set contains only those elements that are not common to both
sets. The result is ordered and put into result. It returns an iterator to the end of the result.

The second form allows you to specify a comparison function that determines when
one element is less than another.

set_union

template <class InIterl, class InIterZ, class Cutiter>
OCutlIter set_union({Inlterl startl, Inlterl endl,
InlIter?2 start2, Inlter2 end2, Outlter result);
template <class InIterl, class InlIter2, class Outlter, ciass Comp>
OutIter set_union(InIterl startl, Inlterl endl,
Inlter2 start2, Inlter2 end2, Outlter result,
Comp cmpfn) ;

The set_union() algorithm produces a sequence that contains the union of the two
ordered sets defined by start1, end1 and start2, end2. Thus, the resultant set contains
those elements that are in both sets. The result is ordered and put into result. It returns
an iterator to the end of the result.

The second form allows you to specify a comparison function that determines when
one element is less than another.

sort

template <class RandIter>
void sort(RandIter start, RandIter end);
template <class Randiter, classComp>
void sort(RandIter start, RandIter end, Comp cmpfn);

The sort() algorithm sorts the range specified by start and end.
The second form allows you to specify a comparison function that determines when
one element is less than another.

sort_heap

template <class RandIter>
void sort_heap(RandIter start, RandIlter end);

Chapter 34: The STL Algorithms

template <class RandIter, class Comp>

void sort_heap{RandlIter start, RandIter end, Comp cmpfn);

The sort_heap() algorithm sorts a heap within the range specified by start and end.
The second form allows you to specify a comparison function that determines when
one element is less than another.

stable_partition

template <class BilIter, class UnPred>
BiIter stable partition(Bilter start, Bilter end, UnPred pfn);

The stable_partition() algorithm arranges the sequence defined by start and end
such that all elements for which the predicate specified by pfi returns true come before
those for which the predicate returns false. The partitioning is stable. This means that
the relative ordering of the sequence is preserved. It returns an iterator to the beginning
of the elements for which the predicate is false.

stable_sort

template <class RandIter>
void stable_sort (RandIter start, RandIter end) ;
template <class RandIter, class Comp>
void stable_sort(RandIter start, RandIter end, Comp cmpfn);

The sort() algorithm sorts the range specified by start and end. The sort is stable.
This means that equal elements are not rearranged.

The second form allows you to specify a comparison function that determines when
one element is less than another.

swap

template <class T>
void swap(T &i, T &7);

The swap() algorithm exchanges the values referred to by iand j.

857

m “C++: The Complete Reference

swap_ranges

template <class ForIterl, class ForIter2>
ForIter2 swap_ranges (ForIterl startl, ForIterl endl,
Forlter2 start2);

The swap_ranges() algorithm exchanges elements in the range specified by start1
and end] with elements in the sequence beginning at start2. It returns an iterator to the
end of the sequence specified by start2.

transform

template <class Inlter, class Outlter, class Func>
OutIter transform(InIter start, Inlter end,
OutIter result, Func unaryfunc);
template <class InIterl, class InIter2, class OutIter, class Func>
OutIter transform(InIterl startl, InIterl endl,
Inlter2 start?2, Outliter result,
Func binaryfunc) ;

The transform() algorithm applies a function to a range of elements and stores the
outcome in result. In the first form, the range is specified by start and ernd. The function
to be applied is specified by unaryfunc. This function receives the value of an element in
its parameter and it must return its transformation.

In the second form, the transformation is applied using a binary operator function
that receives the value of an element from the sequence to be iransformed in its first
parameter and an element from the second sequence as its second parameter.

Both versions return an iterator to the end of the resulting sequence.

unique and unique_copy

template <class ForlIter>

ForIter unique(ForIter start, ForIter end):
template <class ForlIter, class BinPred>

ForIter unique(ForlIter start, ForIter end, BinPred pfn);
template <class Forlter, class OutIter>

OutIter unique_copy (ForIter start, ForIter end, Outlter result);
template <class ForlIter, class OutIter, class BinPred>

OutIter unique_copy(ForIter start, ForIter end, Outlter result,

BinPred pfnj;

Chapter 34: The STL Algorithms = 859

The unique() algorithm eliminates duplicate elements from the specified range. The
second form allows you to specify a binary predicate that determines when one element
is equal to another. unique() returns an iterator to the end of the range.

The unique_copy() algorithm copies the range specified by start1 and endl,
eliminating duplicate elements in the process. The outcome is put into result. The second
form allows you to specify a binary predicate that determines when one element is equal
to another. unique_copy() returns an iterator to the end of the range.

upper_bound

template <class ForIter, class T>
ForIlter upper_bound(Foriter start, Foriter end, const T &val);
M template <class ForIter, class T, class Comp>
ForIter upper_bound(ForIter start, Forlter end, const T &val,
Comp cmpfn);

The upper_bound() algorithm finds the last point in the sequence defined by start
and end that is not greater than val. It returns an iterator to this point.

The second form allows you to specify a comparison function that determines when
one element is less than another.

